Installation Guide
DISCOVERSE is a unified, modular open-source 3DGS robot simulation framework supporting the Real2Sim2Real learning workflow. This guide will help you install and configure DISCOVERSE on your system.
System Requirements
Minimum Requirements
- Python 3.8+
- Operating System: Linux (Ubuntu 18.04+), macOS, or Windows 10+
- Memory: At least 8GB RAM
Recommended Configuration
- Python 3.10
- CUDA 11.8+ (for 3DGS rendering)
- NVIDIA GPU (8GB+ VRAM recommended)
- Git LFS (for model file management)
Quick Installation
1. Clone the Repository
git clone https://github.com/TATP-233/DISCOVERSE.git
cd DISCOVERSE
It is recommended to download submodules as needed, rather than using the --recursive
flag to fetch all at once. This saves time and storage.
2. Create a Virtual Environment
conda create -n discoverse python=3.10
conda activate discoverse
3. Choose Installation Method
Select the appropriate installation method based on your use case:
Basic Installation (Recommended for Beginners)
pip install -e .
Includes: MuJoCo, OpenCV, NumPy and other basic dependencies
LiDAR SLAM Research
pip install -e ".[lidar,visualization]"
- Features: High-performance LiDAR simulation with Taichi GPU acceleration
- Dependencies:
taichi>=1.6.0
- Applications: Mobile robot SLAM, LiDAR sensor simulation, point cloud processing
Robotic Arm Imitation Learning
pip install -e ".[act_full]"
- Features: Imitation learning, robot skill training, policy optimization
- Dependencies:
torch
,einops
,h5py
,transformers
,wandb
- Algorithms: Other algorithms available with
[dp_full]
or[rdt_full]
High-Fidelity Visual Simulation
pip install -e ".[gaussian-rendering]"
- Features: Realistic 3D scene rendering with real-time lighting
- Dependencies:
torch>=2.0.0
,torchvision>=0.14.0
,plyfile
,PyGlm
- Applications: High-fidelity visual simulation, 3D scene reconstruction, Real2Sim workflow
Full Features (Not Recommended)
pip install -e ".[full]"
4. Download Submodules
# Automatically detect and download required submodules
python scripts/setup_submodules.py
# Manually specify modules
python scripts/setup_submodules.py --module lidar act
# Download all submodules (suitable for Docker environments)
python scripts/setup_submodules.py --all
5. Verify Installation
# Basic check
python scripts/check_installation.py
# Detailed information
python scripts/check_installation.py --verbose
Git LFS Setup
DISCOVERSE model files are managed through Git LFS:
Linux Systems
curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
sudo apt-get install git-lfs
git lfs install
git lfs pull
macOS Systems
brew install git-lfs
git lfs install
git lfs pull
Module Feature Comparison
Module | Installation Command | Feature Description | Use Cases |
---|---|---|---|
Basic | pip install -e . | Core simulation features | Learning, basic development |
LiDAR | .[lidar] | High-performance LiDAR simulation | SLAM, navigation research |
Rendering | .[gaussian-rendering] | 3D Gaussian Splatting rendering | Visual simulation, Real2Sim |
GUI | .[xml-editor] | Visual scene editing | Scene design, model debugging |
ACT | .[act] | Imitation learning algorithm | Robot skill learning |
Diffusion Policy | .[diffusion-policy] | Diffusion model policy | Complex policy learning |
RDT | .[rdt] | Large model policy | General robot skills |
Hardware Integration | .[hardware] | RealSense+ROS | Real robot control |
Docker Installation
If you prefer using Docker environment:
# Download pre-built image
# Baidu Cloud: https://pan.baidu.com/s/1mLC3Hz-m78Y6qFhurwb8VQ?pwd=xmp9
# Or build from source
git clone https://github.com/TATP-233/DISCOVERSE.git
cd DISCOVERSE
python scripts/setup_submodules.py --all
docker build -t discoverse:latest .
# Run with GPU support
docker run -it --rm --gpus all \
-e DISPLAY=$DISPLAY \
-v /tmp/.X11-unix:/tmp/.X11-unix \
-v $(pwd):/workspace \
discoverse:latest
High-Fidelity Rendering Setup (Optional)
If you need 3DGS high-fidelity rendering features:
1. CUDA Installation
Install CUDA 11.8+ from NVIDIA website, choosing the version compatible with your graphics driver.
2. Build 3DGS Dependencies
pip install -e ".[gaussian-rendering]"
cd submodules/diff-gaussian-rasterization/
# Apply patches
sed -i 's/(p_view.z <= 0.2f)/(p_view.z <= 0.01f)/' cuda_rasterizer/auxiliary.h
sed -i '361s/D += depths\[collected_id\[j\]\] \* alpha \* T;/if (depths[collected_id[j]] < 50.0f)\n D += depths[collected_id[j]] * alpha * T;/' cuda_rasterizer/forward.cu
cd ../..
pip install submodules/diff-gaussian-rasterization
3. Download 3DGS Models
Place model files in the models/3dgs
directory.
Troubleshooting
If you encounter installation issues, please refer to:
- Dependency Conflicts: Try creating a new virtual environment
- CUDA Issues: Verify GPU driver and CUDA version compatibility
- Git LFS Issues: Check network connection and LFS configuration
- Permission Issues: Use
sudo
on Linux/macOS or adjust file permissions
For more detailed troubleshooting information, please refer to the project's troubleshooting documentation.
Next Steps
After installation, you can:
- View the Quick Start Guide to run your first example