Data Generation
Data generation is the first step in imitation learning. DISCOVERSE provides automated data collection tools.
đ¯ Automated Data Collectionâ
DISCOVERSE provides several single-arm and dual-arm manipulation tasks, located in discoverse/examples/tasks_airbot_play
and discoverse/examples/tasks_mmk2
.
Automated Collection Commandâ
To automatically collect data, run:
cd scripts
python tasks_data_gen.py --robot_name <ROBOT_NAME> --task_name <TASK_NAME> --track_num <NUM_TRACK> --nw <NUM_OF_WORKERS>
Exampleâ
python tasks_data_gen.py --robot_name airbot_play --task_name kiwi_place --track_num 100 --nw 8
This means using the airbot_play robotic arm, the task is kiwi placement, generating 100 task trajectories in total, and using 8 processes to generate data in parallel.
đ Data Format Conversionâ
Different imitation learning algorithms require different data formats:
ACTâ
Convert the raw data collected in simulation to the hdf5 format used by the ACT algorithm:
python3 policies/act/data_process/raw_to_hdf5.py -md mujoco -dir data -tn <task_name> -vn <video_names>